[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ12 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
363
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/17(金)18:03 ID:MEr9oV+O(5/6) AAS
>>177
(引用開始)
>これが 理解できていれば、選択関数は
>整列可能定理の 関係R の構成を通じて 具体化可能だ!と
じゃあ実数の整列順序を構成してみて
整列可能定理でできるんでしょ?
(引用終り)

”実数の整列順序”に戻る
下記です
・選択公理を含む集合論の ZFC 公理系からは、実数全体の成す集合 R 上の整列順序が存在することが示せる
・しかし、ZFC や、一般連続体仮説を加えた体系 ZFC+GCH においては、R 上の整列順序を定義する論理式は存在しない[1]
・V=L は ZFC と(相対的に)無矛盾であり、ZFC+V=L ではある特定の論理式が R(実際には任意の集合)を整列順序付けることが従う

(参考)
ja.wikipedia.org/wiki/%E6%95%B4%E5%88%97%E9%9B%86%E5%90%88
整列集合

実数からなる集合
正の実数全体の成す集合 R+ に通常の大小関係 ≤ を考えたものは整列順序ではない
例えば開区間 (0, 1) は最小元を持たない
一方、選択公理を含む集合論の ZFC 公理系からは、実数全体の成す集合 R 上の整列順序が存在することが示せる
しかし、ZFC や、一般連続体仮説を加えた体系 ZFC+GCH においては、R 上の整列順序を定義する論理式は存在しない[1]
ただし、R 上の定義可能な整列順序の存在は ZFC と(相対的に)無矛盾である
例えば V=L は ZFC と(相対的に)無矛盾であり、ZFC+V=L ではある特定の論理式が R(実際には任意の集合)を整列順序付けることが従う

R の非可算部分集合に通常の大小関係を入れたものが整列集合にならないことは、実数直線 R を互いに交わりを持たない区間の和に分割するとき、そのような区間の数が高々可算であることからわかる
可算無限集合ならば、通常の大小関係 ≤ が整列順序となることも、ならないこともありうる

en.wikipedia.org/wiki/Well-order
Well-order

ja.wikipedia.org/wiki/%E5%AE%9F%E6%95%B0
実数
定義
実数体とは順序体であって空でない上に有界な部分集合が上限を持つようなものをいう[注 1]。実数体の元(=要素)を実数という

また位相的特徴付けである次を定義として採用することも出来よう:非自明な順序体であって順序位相に関して連結なものは唯一つに定まる(アルキメデス的順序群に関するHölderの定理による)。これを実数体と呼ぶ。実数体の元(=要素)を実数という

これで実数(体)の概念は定まったがこれだけではまだ実数(体)というものが存在するかどうかは分からない。しかし#構成節で述べるようにそのようなものは実際に存在する、即ちこのような性質を満たす順序体が構成できることが分かる。またその構成方法は複数ある。また本記事では言及されていないが本来存在するならば、それがある意味で一意的なものであるかを確かめる必要があるが、実数体は実際にある意味で一意的に定まる[注 2]

注釈
[脚注の使い方]
1^ この性質を順序完備性と呼ぶことがある。実数体においては特に「上限性質」という呼称で呼ばれることが多い。なおこの性質には実数の連続性にある通り同値な言い換えが複数ある
2^ これは正確に述べると「実数体の定義を満たす二つの順序体は順序体として同型(=順序同型かつ体同型であるような写像が存在する)」という意味である
1-
あと 639 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.014s