[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ12 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
146
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/12(日)08:34 ID:gsEji7DN(1/21) AAS
>>142-144
>整列可能定理と選択公理の関係から、両者に「可算」を付けても同じだろうと
>連想したのだろうが、証明を読めば事情はまったく異なる。

やれやれ
証明が読めてない人は、だれでしょか? ;p)
下記に、整列可能定理→選択公理 の証明を、貼ります!
英語版が分りにくいので、中国版とイタリア版 を追加した
百回音読してね

(参考)
en.wikipedia.org/wiki/Well-ordering_theorem
省12
158
(2): 01/12(日)09:55 ID:f+uyuyBP(1/6) AAS
>>146
可算集合の整列可能性は定義から自明。
可算選択公理は証明に不必要で
関係ない公理であると言える。当然ながら
可算集合の整列可能性⇒可算選択公理
が証明できるわけない。

リンク先の証明でいうと
可算集合族をEとして、Eに属する集合たちの和集合をXとする。
Xの整列から、可算選択公理が導かれるが
Xは可算集合とは限らないのだから、あなたの言う
省7
176
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/12(日)13:37 ID:gsEji7DN(14/21) AAS
>>174
>x上の二項関係≦を f(x)≦f(x-{f(x)})≦f(x-{f(x),f(x-{f(x)})})≦・・・ で定義すれば≦は整列順序。
>ここで写像fは具体的でないので≦も具体的でない。すなわち整列定理からはいかなる具体的整列順序も出てこない。
>雑談くんには理解できないだろうなぁ(遠い目)

いやいやww ;p)
おっさんな

 >>146-147の Well-ordering theorem (整列可能定理)の
”Proof of axiom of choice”などで

(中国版より(英語版でも同様))
『×に整列関係Rがある。
省32
208
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/13(月)00:01 ID:xSRlEtRO(1/17) AAS
>>146 補足
(引用開始)
(参考)
en.wikipedia.org/wiki/Well-ordering_theorem
Well-ordering theorem
(引用終り)

この整列可能定理の系を思いついたので、書いておく
 >>203の集合Tとその元 s1,s2,s3 ・・・∈T の表記を借用する

<整列可能定理の系(冒頭 有限個は任意)>:
可算無限以上の濃度とする集合Tに対して、整列可能定理を認めるとする
省11
319
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/15(水)23:39 ID:HSrNcrvS(1/3) AAS
>>310
検索すると
 >>148 (>>146-147もご参照)
にあるね
補足
>>146で『整列可能定理→選択公理 の証明を、貼ります!
 英語版が分りにくいので、中国版とイタリア版 を追加した』
 と書いたけど
・このときに、選択公理→整列可能定理について、
 中国版とイタリア版も見て、殆ど同じだと見ていたんだ (^^
省25
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 2.227s*