(情報科学)技術的特異点と科学・技術等 1 (ナノテク) [転載禁止]©2ch.net (840レス)
1-

658: 2017/02/16(木)09:52 ID:n4SoUyRC(1) AAS
動画リンク[YouTube]
659: [age] 2017/02/17(金)08:25 ID:C7chZT7r(1) AAS
関連スレ

技術的特異点/シンギュラリティ後の日本/世界経済 [無断転載禁止]©2ch.net
2chスレ:eco

【人工知能】日本を救う究極の経済政策『シンギュラリティ』 [無断転載禁止]©2ch.net
2chスレ:seiji
660
(2): 656 [>620sage_bunmyaku_yosoku] 2017/02/17(金)13:48 ID:pF3vP0RD(1/3) AAS
Page 40

記憶できる。「犬」のような単語が異なる文脈の中でユニークな表現を持つ ry
。この能力により HTM リージョンは可変長の予測 ry

可変長予測は現在起きていることだけではなく、可変の長さの過去の文脈に基づいて予測する。
HTM リージョンは可変長の記憶である。

カラム当たり 5 セルに増やすと、 ry
可能なコード化の数は 5100 に増加し、4100 よりずっと大きくなる。
しかし、 ry 多くの現実的な問題においてこの容量の増加はあまり役に立たない ry

しかしながら、 ry 少なくすると、大きな違いが生まれる。
省9
661
(2): 660 [>620sage_bunmyaku_yosoku] 2017/02/17(金)13:49 ID:pF3vP0RD(2/3) AAS
時間的理解と静的理解とでは、異なる推論メカニズム ry
一方は可変長の文脈に基づいてパターンのシーケンスを理解し、予測をする必要がある。
他方は時間的文脈を使わずに静的な空間的パターンを理解する必要がある。
カラム当たり複数のセルを持つ HTM リージョンは時間に基づくシーケンスを理解
するのに理想的であり、カラム当たり1セルの HTM リージョンは空間的パターンを理解
するのに理想的である。
Numenta では、カラム当たり1セルのリージョンを視覚問題に適用した実験を数多く実施 ry
重要な概念だけ述べる。

HTM リージョンにイメージを入力すると、リージョン内のカラムは画素の共通の空間的配列
の表現を学習する。学習するパターンの種類は新皮質の V1 野
省4
662: 620 2017/02/17(金)14:23 ID:pF3vP0RD(3/3) AAS
>> 2chスレ:future
>  ・唯一無二派
>  ・客観派
自動憑依 余地

>    ・脳拡張派
連続度 ⇔ 工事による影響
2chスレ:future haamonii

>  ・電脳派
粒度 ( 分解能 ) : 正確性

2chスレ:future SaitouSensei BCI Habu
省6
663: 異次元騎士カズマ 2017/02/17(金)19:09 ID:XMFDn/Yv(1) AAS
俺は敵の海賊島に潜入し,船長の部屋に乗り込んだ。誰もいない。
くそっ,ヤツはどこだっ!
とそこで,ベッドの上に鎖で縛り付けられている黒人娘を見つけた。
彼女は叫んだ「カズマ! 来てくれたの?」
俺にはこんな丸顔の黒人女は知り合いにいないのだが……ってマノン?

そんな馬鹿な,彼女は卵形の顔をしていたし,薔薇色の肌だった。
そして二重で勝気なグリーンの瞳を持っているんだ。
しかしそれは間違いなくマノンだった。
顔と肌はボコボコに殴られ腫れて黒ずんでいて,片目はつぶれている。
左脚は膝から逆方向にまがっており,歯も1本も残っていない。
省10
664: 異次元騎士カズマ 2017/02/18(土)08:55 ID:Uf5aHGu8(1) AAS
工知能で自我・魂が作れるか [無断転載禁止]©2ch.net
202 : 異次元騎士カズマ2017/02/17(金) 19:10:13.24 ID:XMFDn/Yv
俺は敵の海賊島に潜入し,船長の部屋に乗り込んだ。誰もいない。
くそっ,ヤツはどこだっ!
とそこで,ベッドの上に鎖で縛り付けられている黒人娘を見つけた。
彼女は叫んだ「カズマ! 来てくれたの?」
俺にはこんな丸顔の黒人女は知り合いにいないのだが……ってマノン?

そんな馬鹿な,彼女は卵形の顔をしていたし,薔薇色の肌だった。
そして二重で勝気なグリーンの瞳を持っているんだ。
しかしそれは間違いなくマノンだった。
省12
665
(2): 660 [>620sage_bunmyaku_yosoku] 2017/02/19(日)00:40 ID:Iy/nas+o(1/2) AAS
Page 41

もしリージョンへの入力画像が、垂直な線が右に移動するものだったら ry ?
カラム当たり1セルしかなかったら、線が次に左又は右に現れること43を予測できる ry
。線が過去にどこにあったか知っているという文脈を使うことができないため ry
移動していることを知ることはできない。
このようなカラム当たり1セルのものは、新皮質の「複雑型細胞」44のように振舞う ry
。そのようなセルの予測出力は、 ry 動いていようがいまいが
異なる位置にある視覚的な線に対してアクティブになるだろう。
このようなリージョンは異なるイメージを区別する能力を保持する一方で、
平行移動や大きさの変化に対して安定 ry
省4
666: 665 [>620sage_bunmyaku_yosoku] 2017/02/19(日)00:41 ID:Iy/nas+o(2/2) AAS
これらをまとめ ry 仮説 ry
新皮質は一次と可変長の両方の推論及び予測 ry
。新皮質の各リージョンには 4 又は 5 層のセルがある。
ry それらはすべてカラム単位で応答する性質 ry 水平方向に大きな接続性 ry
。新皮質のセルの層は ry HTM の推論と学習に似たことを実行しているのではないか ry
。異なる層のセルは異なる役割 ry 。例えば解剖学によれば
第 6 層は階層構造のフィードバックを形成し、第 5 層は運動の動作に関わっている。
。異なる層のセルは異なる役割 ry
解剖学 ry 6 層は階層構造のフィードバックを形成し、第 5 層は運動の動作 ry
。セルの 2 つの主要なフィード・フォワード層は第 4 層と第 3 層である。
省13
667
(1): 665 [>620sage_yosoku] 2017/02/20(月)00:16 ID:PjnuggmX(1) AAS
Page 42

ている。センサ入力に近いリージョンでは、
一次記憶を実行するニューロンの層が空間的不変性に有利であるため役に立つ。

ry 一次(カラム当たり1セル)の HTM リージョンを画像認識問題に適用する実験 ry
可変長(カラム当たり複数セル)の ry に可変長のシーケンスを理解・予測させる実験 ry
。将来 ry 一つのリージョンに混在させ、他の目的にもアルゴリズムを拡張 ry
しかしながら、一つの層と等価なカラム当たり複数セルの構造が、
単体であれ複数階層であれ、多くの興味深い問題を取り扱いうる ry
668: 2017/02/22(水)14:16 ID:NK3va3H8(1) AAS
35:54

10:40
動画リンク[YouTube]

動画リンク[YouTube]
669
(2): 667 [>620sage_yosoku昨日放о性金属臭] 2017/02/26(日)02:06 ID:vIzrnxYS(1/4) AAS
Page 43

第3章: 空間プーリングの実装と疑似コード

ry プーリング関数48の最初の実装の疑似コード ry
。このコードの入力は、センサー・データ又は前のレベルからのバイナリ配列である。
このコードは activeColumns(t) を計算する。activeColumns(t) は
時刻 t において、フィード・フォワード入力に対して選択されたカラムのリスト ry
時間プーリング関数の入力 ry activeColumns(t) は空間プーリング関数の出力 ry
670: 669 [>620sage] 2017/02/26(日)02:07 ID:vIzrnxYS(2/4) AAS
疑似コードは3つのフェーズ ry 順に実行 ry

ry 1: 各カラムについて、現在の入力のオーバラップを計算する。
ry 2: 抑制の後に勝者となったカラムを計算する。
ry 3: シナプスの永続値と内部変数を更新する。

空間プーリングの学習はオンライン49で行われるが、
フェーズ 3 を単にスキップすることで学習をしないようにすることもできる。

以下、3つのフェーズのそれぞれについて疑似コードを示す。
ry データ構造や補助関数は本章の最後に示す。

初期化
最初の入力を受け取る前に、各カラムの最初のシナプス候補のリストを計算して
省11
671
(2): 669 [>620sage] 2017/02/26(日)17:47 ID:vIzrnxYS(3/4) AAS
Page 44

フェーズ 1: オーバラップ
ry 与えられた入力ベクトルについて、そのベクトルと各カラムのオーバラップを計算する。
ry オーバラップは、アクティブな入力と接続されたシナプスの数 ry にブースト値を掛け ry
。もしこの値がminOverlap を下回 ry 0 ry

1. for c in columns
2.
3.   overlap(c) = 0
4.   for s in connectedSynapses(c)
5.     overlap(c) = overlap(c) + input(t, s.sourceInput)
省5
672: 671 [>620sage] 2017/02/26(日)17:49 ID:vIzrnxYS(4/4) AAS
フェーズ 2: 抑制
ry 抑制の後に勝者となったカラムを計算する。
desiredLocalActivity は勝者となるカラムの数を制御するパラメータである。
例えば、 desiredLocalActivity を 10 ry
抑制半径 ry においてカラムのオーバラップ値が高い順に 10 位以内のカラムが勝者 ry

11. for c in columns
12.
13.   minLocalActivity = kthScore(neighbors(c), desiredLocalActivity)
14.
15.   if overlap(c) > 0 and overlap(c) minLocalActivity then
省5
673
(2): 671 [>620sage] 2017/02/27(月)23:47 ID:2got1qbV(1/2) AAS
Page 45

主要な学習規則は 20-26 行 ry 。勝者となったカラムのそれぞれについて、
もしあるシナプスがアクティブであればその永続値をインクリンメントし、
その他の場合はデクリメントする。永続値は 0 から 1 の範囲 ry

28-36 行目ではブーストを実装している。
カラムが接続を学習するための二つの独立したブースト機構がある。
あるカラムがあまり勝者となっていない(activeDutyCycleで観測される)とき、
そのブースト値をインクリメントする(30-32 行目)。
一方、あるカラムのシナプスがどの入力ともあまりオーバラップしない50
(overlapDutyCycle で観測される)とき、その永続値がブーストされる(34-36 行目)。
省2
674: 673 [>620sage] 2017/02/27(月)23:48 ID:2got1qbV(2/2) AAS
AA省
675
(2): 673 2017/03/01(水)06:47 ID:3+1CchsD(1/2) AAS
Page 46

データ構造と補助関数

以下の変数とデータ構造が疑似コードで ry

columns
すべてのカラムのリスト
input(t,j)
時刻t におけるこのレベルへの入力。j 番目の入力がオンのとき、input(t, j) は1である。
overlap(c)
ある入力パターンに対する、カラムc の空間プーリング・オーバラップ
activeColumns(t)
省12
676
(1): 675 [>620sage] 2017/03/01(水)06:48 ID:3+1CchsD(2/2) AAS
synapse
シナプスを表すデータ構造。永続値と接続元の入力の添え字からなる。
connectedPerm
もしあるシナプスの永続値がこの値よりも大きければ、接続していると判定される
potentialSynapses(c)
シナプス候補とその永続値のリスト
connectedSynapses(c)
potentialSynapses(c) の部分集合で、永続値がconnectedPerm以上のものからなる。
これらは現在カラムc に接続されているフィード・フォワード入力である。
permanenceInc
省5
677
(1): 620 2017/03/04(土)02:53 ID:Ncs0Tr2h(1) AAS
>>384 2chスレ:future DSL-AI , JidouPuroguramingu
1-
あと 163 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.017s