[過去ログ] 不等式への招待 第5章 (1001レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
509
(3): 2011/08/16(火)05:26 AAS
>>498

次に
 f(A^3,1/A,1/A,1/A) ≧ 25/4,  (A≧1)
を示そう。

 f(A^3,1/A,1/A,1/A) - 25/4
 = 1/A^3 + 3A + 9A/(A^4 +3) - 25/4
 = 3(A-1)^2・{A^6 -(1/12)A^5 -(7/6)A^4 -(9/4)A^3 +3A^2 +2A +1}/{A^3(A^4 +3)}
 = 3(A-1)^2・g(A)/{A^3(A^4 +3)}
 ≧ 0,

∵ g(A) = A^6 -(1/12)A^5 -(7/6)A^4 -(9/4)A^3 +3A^2 +2A +1
省4
510: 2011/08/16(火)05:33 AAS
>>508-509
の最後の式の右辺は間違い。

 25/4
 +5.782966457(A-1)
に訂正。
511: 2011/08/16(火)19:20 AAS
>>509

最小を探すなら、微分使った方が簡単....だな

 F(A) = 1/A^3 +3A +9A/(A^4 +3),

 F '(A) = -3/A^4 + 3 + 27(1-A^4)/(A^4 +3)^2
     = 3(A^4 -1)(A^8 -3A^4 +9)/{(A^4)(A^4 +3)^2},

  A^8 -3A^4 + 9 = (A^4 -3)^2 + 3A^4 > 0,
512
(1): 2011/08/19(金)01:38 AAS
AA省
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.160s*