[過去ログ] 不等式への招待 第6章 (995レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
209
(3): 2012/07/12(木)13:03 AAS
For positive real numbers a_2, a_3,..., a_n with a_2a_3・・・a_n=1.

Prove that :

(a_2+1)^2(a_3+1)^3・・・(a_n+1)^n≧ n^{n}.
210: 2012/07/13(金)06:45 AAS
AA省
212
(1): 2012/07/14(土)04:49 AAS
>>209 の改良

ラグランジュの未定乗数法で極小をさがす。
 a_k = λ/(k-λ),    (k=2,・・・,n)
 (与式) = Π[k=2,n] {k/(k-λ)}^k,

・n=3 のとき、
 λ = 6/5, a_2 = 3/2, a_3 = 2/3,
 (与式) ≧ 3125/108 = 28.935185・・・・・ > 27 = 3^3

・n=4 のとき
 a_k = λ/(k-λ),
 λ = {9 + [6*SQRT(11901)-81]^(1/3) - [6*SQRT(11901)+81]^(1/3)}/6
省2
214
(1): 2012/07/15(日)07:27 AAS
>>209 の改良
 L = Σ[k=2,n] {k・log(a_k + 1) - λ・log(a_k)},
 ∂L/∂a_k = k/(a_k + 1) - λ/(a_k) = 0  より
 a_k = λ/(k-λ),
 (2-λ)(3-λ)・・・・・(n-λ) = λ^(n-1), ・・・・ 決定方程式

・n=5 のとき
 (2-λ)(3-λ)(4-λ)(5-λ) = λ^4,
 λ = {71 + [(42√1749261)-13411]^(1/3) - [(42√1749261)+13411]^(1/3)}/42
   = 1.54263254839049
 (左辺) = 7407.43642129488 > 3125 = 5^5,
省1
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s