[過去ログ] 2つの封筒問題 Part.3 [無断転載禁止]©2ch.net (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
4(8): 2017/03/13(月)13:02 ID:MLKxbWEk(1) AAS
前スレ>>997へ
> >プレーヤーは初めてゲームを行い、かつ1回きりだ。
> という前提を置きたいならそれでもよい。
> その場合、無数の可能世界を考えてみればよい。
当然そうするものだ。それを正しく行えということだよ。シミュレーション以前に数式としてね。
> 例えば、開けた封筒に1万円を見たという参加者がいる100万ほどの同様な世界を考えればよい。
当然、そうなる。100万というのは要は多数だね。ここまでは正しいんだよ。
> 封筒を交換することにより、約50万の世界では、半分の5千円になり、約50万の世界では倍の2万円になる。
これが「1回きり」を100万やってみることになってないわけだ。いいか、このゲームでは部屋は1つしかない。その部屋に封筒が2通ある。
それを多数用意することになる。他方が5千か2万というのも正しい。問題はその5千と2万を足して2で割るのが正しいかどうかだ。
大数の法則を適用すべき封筒は2つ、つまり2種類しかない。1つは1万だった。残るは1通。
多数回で平均を取るということは、その1通がどうなのかを考えねばできない。共存できる状況は何か。
5千と2万が共存できるか。できない。なぜか。多数回行うをこう考えてみるといい。
2つの封筒を変えずに、1万を見て、何度も2通目を開ける。もし2通目が5千なら5千ばかり開け続けることになる。
もし2通目が2万なら2万ばかり見続けるわけだ。要はね、5千と2万は共存できず、したがって平均を取るのは無意味なんだよ。
お前が考えているのは、部屋を多数用意したディーラーの立場での計算なんだよ。
ディーラーは1万-5千のペアの封筒をn組用意し、2万-1万のペアの封筒をm組用意する。
それを多数のプレーヤーでゲームさせる。ディーラーはプレーヤーの平均利益を予め計算できる。自分で封筒を設定したんだからな(ここ、ポイント)。
(7,500n+15,000m)/(n+m)だ。n=mの場合は11,250になる。12,500となるのは、10,000を見て捨てるケースのみの計算だからだ。
> 平均値はほぼ12500円だ。
> これは、結局、多回数シミュレーションした場合と同じだ。当たり前だが。
上記の通り、間違った計算なわけだよ。5千と2万に偏りがあれば数値が異なるし。こんなことはさんざん既出のはずなんだがな。
上下前次1-新書関写板覧索設栞歴
あと 998 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.008s