[過去ログ] 不等式への招待 第8章 [無断転載禁止]©2ch.net (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
687
(3): 2017/08/24(木)01:23 ID:9N+3FV4m(2/3) AAS
>>679

(2)
ss =(aa+bb+cc)+ t + t,
s^6 ≧{(aa+bb+cc) +t +t}^3
 ≧ 27(aa+bb+cc)tt
 ≧ 81(aa+bb+cc)su,
∴(s/3)^5 ≧{(aa+bb+cc)/3}u,

〔補題196〕
 (8/27)(a+b+c)^5 ≧ (a+b)(b+c)(c+a)(a+b+c)^2 ≧ 24abc(aa+bb+cc),
を使う。(じゅー)
省4
688
(2): 2017/08/24(木)03:22 ID:rYRHhAcs(1) AAS
>>687
> 〔補題196〕
>  (8/27)(a+b+c)^5 ≧ (a+b)(b+c)(c+a)(a+b+c)^2 ≧ 24abc(aa+bb+cc),

左側はアッサリ、右側はサッパリ…。

8(a+b+c)^3 - 27(a+b)(b+c)(c+a) = 3(s^3-4st+9u) + 5s(s^2-3t) ≧ 0

(a+b)(b+c)(c+a)(a+b+c)^2 - 24abc(aa+bb+cc) = s^3t - 25s^2u +48tu

--------------------------------------------------
省6
713
(3): 2017/08/28(月)03:43 ID:Xt3/xWpv(1/5) AAS
(1) a, b, c>0 に対して、(a+b+c)^5 ≧ 81abc(a^2+b^2+c^2)
(2) a, b, c>0 に対して、(a+b+c)^6 ≧ 27(a^2+b^2+c^2)(ab+bc+ca)^2

AOPS:外部リンク:artofproblemsolving.com

[疑問1]
(1)の証明について、

(a+b+c)^3 - 3(a+b)(b+c)(c+a) = s^3 - 3(st-u) = s(s^2-3t) + 3u >0
∴ (a+b+c)^3 > 3(a+b)(b+c)(c+a) ---(A)

>>687 〔補題196〕 の右側
(a+b)(b+c)(c+a)(a+b+c)^2 ≧ 24abc(a^2+b^2+c^2) ---(B)
省12
717: 2017/08/28(月)11:53 ID:4VsD2YTN(3/3) AAS
>>712 の訂正
× (x-y-z)
○ (x+y+z)

>>713

[疑問1]
 (1)は >>679 (2)ですね。
 >>687 を参照。
 あえて難しい〔補題196〕を使う必要は無かったですね。

[疑問2]
 >>687 を参照。
省3
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.536s*