[過去ログ] 分からない問題はここに書いてね 470 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
830(3): 2022/02/24(木)20:28 ID:ZdA9J/8s(1) AAS
G を群とする。
#G = p^n とする。
すると、 Z(G) ≠ {e} が成り立つ。
このことを使って、 G はすべての i ∈ {0, 1, …, n} に対して、位数が p^i であるような部分群を持つことを示せ。
834: 2022/02/25(金)10:06 ID:O3TNYiSS(1) AAS
>>830
帰納法により証明する。
n = 0 のときは明らかに成り立つ。
n-1 のときに成り立つと仮定する。
コーシーの定理により、 Z(G) には位数 p の元が存在する。
<a> ⊂ Z(G) だから、 <a> は G の正規部分群である。
#(G/<a>) = p^{n-1} である。
帰納法の仮定により、 G/<a> はすべての i ∈ {0, 1, …, n-1} に対して、位数が p^i であるような部分群を持つ。
f : G → G/<a> を自然な全射準同型とする。
H を G/<a> の位数 i ∈ {0, 1, …, n-1} の部分群とする。
省10
988: 2022/03/03(木)15:44 ID:5ZtsJXBs(1/2) AAS
>>830
G を群とする。
#G = p^n とする。
すると、 Z(G) ≠ {e} が成り立つ。
このことを使って、 G はすべての i ∈ {0, 1, …, n} に対して、位数が p^i であるような部分群を持つことを示せ。
---------------------------------------------------------------------------------
p を任意の素数とし、 #G = p^n とする。
省5
989: 2022/03/03(木)15:55 ID:5ZtsJXBs(2/2) AAS
>>830
G を群とする。
#G = p^n とする。
すると、 Z(G) ≠ {e} が成り立つ。
このことを使って、 G はすべての i ∈ {0, 1, …, n} に対して、位数が p^i であるような部分群を持つことを示せ。
---------------------------------------------------------------------------------
p を任意の素数とし、 #G = p^n とする。
省17
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.025s