モンテホール確率計算問題を量子論確率収束問題と考える人達 (354レス)
上下前次1-新
130(1): 04/05(金)06:16 ID:SsPCcsdu(3/6) AAS
モンティホール問題だけ扱っている本ではモンティホール問題の変型版として司会者がランダムにドアを開けるケースも考察されてて司会者が当たりを開けたらゲームはやり直しにするというもの。その場合は選択を変えても変えなくても勝つ確率は同じになりますね。
131(1): 04/05(金)09:43 ID:NuQtQpGf(4/7) AAS
>>129,130
司会者が当たりを開けた場合はゲームにならない(ゲームとしてカウントしない)またはやり直しにする場合は、ゲームの統計をとったときに「司会者が当たりを開けた場合」を無視するということだから司会者が必ずハズレを開ける場合と同じと見做せる。
一方、司会者が(A以外の)当たりを開けた場合も1回分として扱う可能性がある場合、司会者が(A以外の)当たりを開けた場合に選択を変えて勝つ確率を0とするか1とするかに関わらず、Bが当たりのとき司会者がBを開ける確率(P(B|B))とBが当たりのとき司会者がCを開ける確率(P(C|B))の間の確率分布を((P(B|B) = 0, P(C|B) = 1)以外にも)考えることができる。
132: 04/05(金)09:52 ID:NuQtQpGf(5/7) AAS
>>131
司会者が(A以外の)当たりを開けた場合を単に除外する場合はBまたはCが当たりの確率が減ってその分Aが当たりの確率が増えることになってしまうのに対して、司会者が(A以外の)当たりを開けた場合にやり直しを行う場合は司会者が必ずハズレを開ける場合と同じと見做せるからこの両者は区別しなければならなかったな
133(1): 04/05(金)11:53 ID:SsPCcsdu(4/6) AAS
司会者が当たりを開けたらやり直しは必ずハズレを開けるのと同じになりますか?
挑戦者がAでハズレを引いたうち、半分は無効とされてしまうからその場合変更して当たりになるら確率を減らすと思いますが。
Aでハズレを選んでいて
司会者が必ずハズレを開ける場合は変更すれば当たる確率1なのに対して司会者が当たりをあけてやり直しになる確率が出てくるわけだから。
134: 04/05(金)12:42 ID:NuQtQpGf(6/7) AAS
選択を変えることが挑戦者にとって有利かが問われるタイミングが司会者がドアを開けた後(事後)であるかどうかによって問題のタイプを分けることができて、
もし事後であれば挑戦者が最初に選んだドア(A)以外の2つのドア(B, C)を区別し、そのうちの一方を司会者が開けたという事実に対して他方を司会者が開けたという事態は反事実として除外する必要がある(モンティ・ホール問題はこのタイプの問題に属する)。したがって挑戦者が選択を変えずに勝つ確率はAが当たりのとき司会者がBを開ける確率(P(B|A))とAが当たりのとき司会者がCを開ける確率(P(C|A))の間の確率分布に依存すると考える必要がある。
その一方、問題の問われる時点が特に事後というわけではない場合、司会がBを開けた場合と司会がCを開けた場合を対称的に扱う必要があり、どちらか一方のみを残して他方を反事実として除外することができないため、挑戦者が選択を変えずに勝つ確率は(Aが当たりかつ司会者がBを開ける場合とAが当たりかつ司会者がCを開ける場合の和事象の確率に等しくなり)P(B|A), P(C|A)間の確率分布に依存せず無条件にAが当たりである確率(= 1/3)に等しいと考える必要がある。
以上の理由から(レス番号122で書いたように)モンティ・ホール問題の答え方として正しいのは選択を変えずに勝つ確率をP(B|A), P(C|A)間の確率分布に依存するものとして扱う場合のみであり、選択を変えずに勝つ確率を無条件にAが当たりである確率に等しいとする答え方は正しくない。(ただしモンティ・ホール問題とは別の非事後型の問題に対する答え方としては正しい)
135: 04/05(金)14:54 ID:SsPCcsdu(5/6) AAS
違いがよくわかりません。
司会者は必ずハズレのドアを開けるという前提で
司会者がハズレのドアを開けた後に挑戦者に
選択を変えるか?を聞くと言う前提ではどうなると考えていますか?
司会者が必ずハズレのドアを開けるのだから最終的に残ったドアは2つで挑戦者がはじめに選択したドアが当たりなら変えるとハズレ。
はじめがハズレなら変えると当たり。
はじめに当たりを選ぶ確率は1/3
はじめにハズレを選ぶ確率は2/3
よって選択を変えた方が得が答えだと思いますが違うと言っているのですか?
136(1): 04/05(金)15:27 ID:SsPCcsdu(6/6) AAS
司会が扉を変えるかを問うタイミングが、事後、と言っている場合と、事後に限らないと言っている場合が、それぞれどういう状況なのかを
具体例を示して頂けますか?
137: 04/05(金)15:38 ID:NuQtQpGf(7/7) AAS
>>133
すまん、Bが当たりのとき司会者がBを開けてやり直した場合必ずBが当たりになり司会者がCを開くことになると思い込んでいた
やり直すっていうのは司会者がA以外の当たりのドアを開けた場合を無効とみなす(選択を変えても当たりにならないとする)ことと確率的にはほぼ同じだから、司会者が必ずハズレを開ける場合と同じではないね
138: 04/05(金)16:54 ID:HMABO3ju(1) AAS
すいません。わかりにくい書き方でしたね。
まあこの問題は少し設定を変えると答えが変わるのでいろいろ考えがいのある問題だと思う。
だからこそこの問題だけで本一冊書ける。
139(3): 04/06(土)11:07 ID:k5rQ168D(1/4) AAS
>>136
事後型のルールはモンティ・ホール問題そのもので、司会者がドアを開けた後に選択を変えるかを司会者がドアを開けた後の時点で決めることができるというルール
非事後型は、司会者がドアを開けた後に選択を変えるかを司会者がドアを開けるよりも前(例えばルール説明をした後ゲームを始める前)の時点で予め決めておかなければならないというルール(司会者がドアを開けた後に(司会者がどのドアを開けたかという情報に基づいて)選択を変えるかを決めることができない)
140: 04/06(土)11:27 ID:k5rQ168D(2/4) AAS
>>139
・選択を変えなければ勝つ ⇔ Aが当たり
・選択を変えれば勝つ ⇔ Aがハズレ ⇔ BまたはCが当たり
よって
・P(選択を変えなければ勝つ) = P(Aが当たり) = 1/3
・P(選択を変えれば勝つ) = P(Aがハズレ) = P(BまたはCが当たり) = 2/3
ということから選択を変える方が有利であるという結論を導くことができるのは非事後型(非モンティ・ホール問題)のルールにおいてのみ(このこと自体は事後型ルールにおいても同様に成り立つ)
141(1): 04/06(土)11:28 ID:k5rQ168D(3/4) AAS
>>139
事後型ルール(モンティ・ホール問題)における考え方
P(Aが当たりかつ司会者がCを開ける)
= P(Aが当たり) × P(C|A)
= 1/3 × P(C|A)
P(Bが当たりかつ司会者がCを開ける)
= P(Bが当たり) × P(C|B)
= 1/3 × 1
= 1/3
P(司会者がCを開ける)
省25
142: 04/06(土)11:32 ID:k5rQ168D(4/4) AAS
>>141
特に、P(B|A) = P(C|A) = 1/2と仮定する場合
0 <= P(C|A) < 1 より
司会者がCを開けたとき選択を変える方が有利
(※このとき
P(司会者がCを開けたとき選択を変えなければ勝つ)
= P(C|A) / (P(C|A) + 1)
= (1/2) / (1/2 + 1)
= 1/3
P(司会者がCを開けたとき選択を変えれば勝つ)
省5
143(1): 04/06(土)12:46 ID:dx7Vzs/r(1) AAS
>>139
事後型はわかった。
理解のために聞きます。
非事後型は司会者はどういう基準で開くドアを決めるんですか?
必ずハズレを開くのですか?
もし必ずハズレを開くのでないなら司会が当たりを明けた場合はゲームはどうなりますか?
144: 04/07(日)06:21 ID:DprN0BkY(1) AAS
>>143
司会者の振る舞いは事後型と非事後型で共通
基本的には司会者は必ずハズレを開けるとしてる
145: 04/07(日)08:13 ID:PDLv41jr(1/3) AAS
であれば両者で結果に差がでる理由がよくわからない。141の下記に疑問あります。
P(Aが当たりかつ司会者がCを開ける)
= P(Aが当たり) × P(C|A)
= 1/3 × P(C|A)
P(Bが当たりかつ司会者がCを開ける)
= P(Bが当たり) × P(C|B)
= 1/3 × 1
= 1/3
Aが当たりの場合とBが当たりの場合の確率がそれぞれ1/3になってます。確率の合計が1になってないですがこれって良いの?
146: 04/07(日)08:17 ID:PDLv41jr(2/3) AAS
Cが当たりの場合はどうなるの?
147(1): 04/07(日)08:28 ID:PDLv41jr(3/3) AAS
P(司会者がCを開ける)
= P(AまたはBが当たりかつ司会者がCを開ける)
= P(Aが当たりかつ司会者がCを開ける) + P(Bが当たりかつ司会者がCを開ける)
= 1/3 × P(C|A) + 1/3
とありますが司会があけるドアをCと呼ぶのならこの確率は端的に1ではないのでしょうか?
司会がBを開ける可能性も考えているということなのでしょうか?
最初にあけるドアをAとするのは分かりましたが
Aが当たり Aがハズレで分けて考えないとおかしくなりそうな気がしました。
148: 04/08(月)02:46 ID:wRsz3+0P(1/2) AAS
何をやろうとしてるのかようやく理解できました。最初に挑戦者が当たりを選んだ場合に司会が残りの2つを1/2の確率で選ぶのではない場合を考えるということですね。
長くなるから書かないけど自分で計算してみました。その場合でも選択を変えると勝つ確率はトータルで
2/3で同じとなると確認できました。違いは司会がどちらの扉をあけたかによって変えて(変えないで)勝つ確率に差が生じるということ。
しかしその場合でも変えた方が有利だしトータルでは2/3の確率になりますね。
149: 04/08(月)03:01 ID:wRsz3+0P(2/2) AAS
Aが当たりで司会がBを開ける場合やCが当たりで司会がBを開ける場合も考えれば確率の合計は1になりました。Aが当たりの場合に司会がBを開けるかCを開けるかが等確率出ない場合でも
P(Bが当たりかつCを開ける)+P(C当たりかつBをあける) を計算すると2/3ですね。
上下前次1-新書関写板覧索設栞歴
あと 205 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.889s*