[過去ログ] 不等式への招待 第5章 (1001レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
856: 2011/12/24(土)07:36 AAS
B.4340.
すべての正数 a1,a2,…,an に対して次の不等式が成り立つことを証せ。
{a1/(a2+…+an)}^2 + {a2/(a3+・・・+a1)}^2 + …… + {an/(a1+…+a(n-1))}^2 ≧ n/(n-1)^2,
B.4343.
a,b は正の数を表わし、a^3 + b^3 =1 とする。a^2 +ab +b^2 -a-b >>0 を示せ。
B.4355.
正数 x,y,z の積が1ならば、次式を証せ。
(z^3 +y^3)/(x^2 +xy +y^2) + (x^3 +y^3)/(y^2 +yz +z^2) + (y^3 +z^3)/(z^2 +zx +z^2) ≧ 2,
B.4370.
頂点A,B,C,の対辺の長さを a,b,c とする。BC=a, CA=b, AB=c,
内心をIとおき、AI=u, BI=v, CI=w とおく。このとき次を示せ。
(a+b+c)(1/u+1/v+1/w) ≦ 3(a/u + b/v + c/w), >>477 >>480
B.4371.
1/{sin(π/14)}^2 + 1/{sin(3π/14)}^2 + 1/{sin(5π/14)}^2 = 24,
を示せ。(A.536を参照。) >>492
B.4376.
x,y は負でない数ならば、次式を証せ。
x^4 + y^3 + x^2 + y + 1 > (9/2)xy,
B.4378.
pは正の素数とする。
方程式 x^3・y^3 + x^3・y^2 - x^2・y^3 + x^2・y^2 -x +y = p+2 を解け。
上下前次1-新書関写板覧索設栞歴
あと 145 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.013s