[過去ログ] スレタイ 箱入り無数目を語る部屋18 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
760(3): 04/09(火)16:13 ID:5Eqt33ow(5/6) AAS
>>756
例えばΩがカントール集合でΩを確率空間として、Ωからランダムに1点aを選んだとき、
aがカントール集合Ωの空集合∅ではない部分集合Aに含まれる確率
を求めるようなことについていっている
宝くじは、確率で計算するまでもなく、当たる確率はほぼ0であると思って間違いない
こんなすぐ分かる確率をムダに計算する人間は>>1だけ
6(1): 03/17(日)08:49 ID:Wb4r6a5R(6/10) AAS
つづき
(完全勝利宣言!w)(^^
2chスレ:math (775の修正を追加済み)
>>701-702 補足説明
>>760にも書いたが、
” a)確率上、開けた箱と開けてない箱とは、扱いが違う”>>701
をベースに、時枝記事>>1のトリックを、うまく説明できると思う
1)いま、時枝記事のように
問題の列を100列に並べる
1〜100列 のいずれか、k列を選ぶ(1<=k<=100)
省23
645: 04/03(水)10:24 ID:35JHQQcb(3/12) AAS
(テンプレ>>6より)
(完全勝利宣言!w)(^^
2chスレ:math (775の修正を追加済み)
>>701-702 補足説明
>>760にも書いたが、
” a)確率上、開けた箱と開けてない箱とは、扱いが違う”>>701
をベースに、時枝記事>>1のトリックを、うまく説明できると思う
1)いま、時枝記事のように
問題の列を100列に並べる
1〜100列 のいずれか、k列を選ぶ(1<=k<=100)
省22
763(1): 04/09(火)17:47 ID:LHOMDWTh(6/7) AAS
>>760
>例えばΩがカントール集合でΩを確率空間として、Ωからランダムに1点aを選んだとき、
>aがカントール集合Ωの空集合∅ではない部分集合Aに含まれる確率
>を求めるようなことについていっている
おっちゃんに分かる説明が、難しいが・・
まず、”Heavy-tailed distribution”、裾が重い(或いは厚い)分布の話、下記をご参照
1)さて、積分 I=∫x=1〜∞ (x^n) dx つまり 区間[1,∞)の定積分で
n=-1のとき、関数(x^n)の減衰が遅く、I→∞に発散することは、高3くらいで知るだろう
もし、n<-1ならば、Iは発散しない
2)確率分布でも、同じことが言えて、正規分布などは減衰が早く指数関数的に減少するので→∞での積分の収束も早い
省30
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.025s