[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ12 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
455: 01/19(日)18:38 ID:xK12QWtu(14/18) AAS
>>454
なぜ、逆行列が存在する行列の行列式が0でないか、証明できる? 君
456: 01/19(日)18:40 ID:xK12QWtu(15/18) AAS
言っとくけど
連立方程式を解くのに別に行列式なんか全く求めなくていい
また行列式を求めるのに定義式の通りに計算する必要もない
これ豆な
457(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/19(日)18:45 ID:RlRmaz0L(7/9) AAS
>>442
(引用開始)
理科大君は数学を博打かなにかだと思ってるらしい
闇雲に式を弄ればまぐれで当たることもある、と
絶対ないとはいわないが
この宇宙がなくなるまでに
そんな奇跡が起きるとは思えんね
(引用終り)
ふっふ、ほっほ
>>355-356より
省12
458: 01/19(日)19:07 ID:xK12QWtu(16/18) AAS
>>457
ああ、なるほどね
ただ、ちょっと違うんだなぁ
理科大君は探しやすいところばっかり探してるでしょ
でもそれは虫が良すぎるよね 範囲をだんだん広げていかないと
459: 01/19(日)19:08 ID:xK12QWtu(17/18) AAS
理科大卒君 式を弄るだけ
阪大工卒君 検索するだけ
前者はちょっとしか考えてない
後者はちょっとすら考えてない
460(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/19(日)20:15 ID:RlRmaz0L(8/9) AAS
>>445
(引用開始)
5チャンでは即興で思い付いたことを書いている
以前他のスレでやったが、周期Pに属する実数全体 P∩R という
零集合上で実解析的に考えれば、有理数体Q上
πとeは代数的独立であることが示せる
(引用終り)
どうもです
スレ主です
おっちゃん お元気そうでなによりです。
省7
461: 01/19(日)20:35 ID:MeW3b4Rf(7/8) AAS
未解決問題が簡単に解けると宣うおっちゃんは典型的なトンデモ。
「即興で証明が思いつく(当然間違っている)」というのもトンデモ。
トンデモさんは、一つの未解決問題に対して、いくつか
異なる「証明」を持っていることも少なくない。
推論の初歩で間違えていて、簡単に矛盾が生じるから
いくつも「証明」が出来てしまうというだけ。
複数の「証明」を持っているから、一つ一つは不完全でも
「合わせ技」で証明できていると思ってるフシもあるが
一つ残らず全部間違っている。
しかも、自分にとって都合がいい方向(たとえば問題が解ける)
省3
462(1): 01/19(日)20:38 ID:MeW3b4Rf(8/8) AAS
>>460
トンデモを助長するような発言は容認できませんね。
病気が悪化した場合、責任が取れますか?
463: 01/19(日)20:46 ID:xK12QWtu(18/18) AAS
>>462
まあ、阪大工卒も立派なトンデモですから
464(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/19(日)20:57 ID:RlRmaz0L(9/9) AAS
>>441
> Jechの証明のfから上記の性質を持つfに改造できればいいってことで
> 多分いろいろやり方はありそうだけ
> (たとえばfが半順序になるところまでなんとか持って行って
> ツォルンの補題を経由して証明するとか)
> 一番簡単なのはJechの証明の方法でとにかく整列しちゃうってことですかね
> ということで意図が分かると、
> 阪大工学部卒の凡人が貶すほど酷いものでもないとわかりますね
おサルか?w >>7-10
自分が書いた証明を、他人になりすまして
省33
465(1): 01/20(月)06:59 ID:lMN8bpqd(1/12) AAS
>>464
> おサルか
サルは大学1年の4月で数学落ちこぼれた阪大工学部卒の凡人君だろ
> 自分が書いた証明を、他人になりすまして評論か? ばれて居るぞ!
誰でも彼でも皆同一人物と思い込むのは妄想性人格障害
> それでは、海賊版のThomas Jechの 証明を 転記しておくから 頑張れぇ〜!
頑張るのは阪大工学部卒の君だよ、キミ
この文章読める?
”we can do by induction, using a choice function f for the family S of all nonempty subsets of A.”
ああ、ごめんごめん。きみ、英語全く読めないニホンザルだったな。翻訳しとくわ。
省6
466(1): 01/20(月)07:09 ID:lMN8bpqd(2/12) AAS
阪大工学部君 集合論でも初歩からつまづきまくり
1.対角線論法でRを可算列として整列させるのに可算選択公理が必要とかぬかす
(背理法の仮定を定理として証明しようとする●●)
2.可算集合Aを整列させるのにJechの明解な証明でも可算選択公理で十分とかぬかす
(あらかじめすべての空でない集合に対して選択関数が定義されてる必要性がわからん●●)
もうツーアウトだぞ あと一つでチェンジな
あと一つ!あと一つ!!
467: 01/20(月)07:31 ID:D55/Jngh(1/2) AAS
>>466
他の話題はないのか
468: 01/20(月)07:39 ID:lMN8bpqd(3/12) AAS
やあ (´・ω・`)
ようこそ、ZFCハウスへ。
このネタはサービスだから、まず読んで落ち着いて欲しい。
うん、「また」なんだ。済まない。
仏の顔も三度って言うしね、謝って許してもらおうとも思っていない。
でも、このネタを見たとき、君は、きっと言葉では言い表せない
「ときめき」みたいなものを感じてくれたと思う。
殺伐とした数学界で、そういう気持ちを忘れないで欲しい
そう思って、このネタを書いたんだ。
じゃあ、注文を聞こうか。
469: 01/20(月)07:46 ID:lMN8bpqd(4/12) AAS
他のネタ
・実数の公理から実数のコーシー列が必ず実数に収束することを示す定理を導く証明
・線型空間が有限n次元ならn次元の数ベクトル空間と同型になることを示す定理の証明
等々
工学部あたりではこういうことはすっ飛ばして
「実数のコーシー列は必ず実数に収束する これ公理な」
「n次元の線型空間とはn次元の数ベクトル空間のこと これ定義な」
と教えるらしいが、理論に全く興味ない一般人相手では仕方ない
470: 01/20(月)07:56 ID:lMN8bpqd(5/12) AAS
工学部では
「実数とは有理コーシー列にある同値関係を入れた場合の同値類である」
とかいっても”?”という顔をされるので
「実数とは無限小数のこと ただし1=0.999…とする」
と教える
無限小数&1=0.999…、が上記の定義を満たすことは
工学部の連中にとっては一生無関係のどうでもいいクソ知識だそうだ
471(1): 01/20(月)08:40 ID:D55/Jngh(2/2) AAS
理学部では
そういうことは
「もう忘れた」でスルーされる
472(1): 01/20(月)09:26 ID:lMN8bpqd(6/12) AAS
>>471
別に一回理解すればいつまでも記憶する必要ない
でも一回も理解してないと・・・
473(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/20(月)15:58 ID:7RKCNKc8(1/6) AAS
<公開処刑 続く>
(『 ZF上で実数は どこまで定義可能なのか?』に向けて と
(あほ二人の”アナグマの姿焼き") に向けてww ;p)
さて >>465 より
(引用開始)
”we can do by induction, using a choice function f for the family S of all nonempty subsets of A.”
ああ、ごめんごめん。きみ、英語全く読めないニホンザルだったな。翻訳しとくわ。
「Aのすべての空でない部分集合の族Sに対する選択関数fを用いて、帰納的に行うことができる。」
(引用終り)
それでな おサルさんよ>>7-10
省40
474(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/20(月)16:01 ID:7RKCNKc8(2/6) AAS
つづき
4)さて 尾畑研 整列集合 定理13.14 より、順序同型 を 考えて
さらに 14.1順序型としての順序数 から 整列集合の順序型→順序数 を使うことを思いつくだろう(Jechのテキストにも書いてある)
もし、この ”整列集合の順序型→順序数”を使わないで、自力で順序を導入して ”整列順序”の「・・任意部分集合が最小元をもつ」を証明しよとすると、大変だろ
ここを処理するのが、一つは 上記 Jechの順序数との対応付け
もう一つが、ツォルンの補題を使うスジです(下記 尾畑研 13.3 整列可能定理 ご参照)
5)また、上記 Jech ”That we can do by induction, using a choicc fimction f for the family S of all nonempty subsets of A.”は
下記のen.wikipedia の Well-ordering theoremの証明では、省かれているよ
溺れる者は藁をもつかむだろうw ;p)
さらに、Jech ”Let θ be the least ordinal such that A = {αξ: ξ < θ}.”
省26
上下前次1-新書関写板覧索設栞歴
あと 528 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.021s